Indian Statistical Institute
 M. Math 2nd year
 Academic year 2022-2023
 Backpaper Examination
 Course: Special Topics in Geometry: Harmonic maps
 07-06-2023
 3 hours

- Answer as many questions as you can.
- You may use results proved in class, but make sure to state them clearly.
- Maximum marks is 100 .

1. Let $M_{n}(\mathbb{R})$ denote the vector space of $n \times n$ real matrices equipped with the operator norm.

Let $f: M_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ be defined by $f(A):=\operatorname{det} A$ for $A \in M_{n}(\mathbb{R})$.
Show that f is differentiable and compute the derivative $D f_{A}: M_{n}(\mathbb{R}) \rightarrow$ \mathbb{R} for any invertible $n \times n$ matrix A.
(12 marks)
2. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{2} function. Suppose that $D^{2} F_{x}(v, v)>0$ for all $v \in \mathbb{R}^{n}-\{0\}$ and for all $x \in \mathbb{R}^{n}$. Suppose that $F(x) \rightarrow+\infty$ as $\|x\| \rightarrow \infty$. Show that F has a unique minimum x_{0} in \mathbb{R}^{n}. (14 marks)
3. Let M be a smooth manifold, let X be a complete vector field on M and let $\left(\phi_{t}: M \rightarrow M\right)_{t \in \mathbb{R}}$ be the flow of X. Let ω be a closed k-form on M, i.e. $d \omega=0$. Let $\sigma=\sum_{i=1}^{m} a_{i} c_{i}$ be a singular k-chain on M (where $m \geq 1, a_{i} \in \mathbb{R}$, and c_{i} is a singular k-cube in M, for $\left.i=1, \ldots, m\right)$. Suppose that σ is a cycle, i.e. $\partial \sigma=0$. Show that there is a constant $k \in \mathbb{R}$ such that

$$
\sum_{i=1}^{m} a_{i} \cdot \int_{\phi_{t} \circ c_{i}} \omega=k
$$

for all $t \in \mathbb{R}$. (12 marks)
4. Let M be a compact Riemannian manifold without boundary. Let f be a smooth function on M such that all integral curves of the gradient vector field ∇f are geodesics. Show that f is constant. (12 marks)
5. Let M be a Riemannian manifold. Let $p \in M$ and let y_{1}, \ldots, y_{n} be normal coordinates near p. Let f be a smooth function on M.
(a) Show that $\nabla f(p)=\sum_{i=1}^{n} \frac{\partial f}{\partial y_{i}}(p) \frac{\partial}{\partial y_{i}}$.
(b) Show that $\Delta f(p)=\sum_{i=1}^{n} \frac{\partial^{2} f}{\partial y_{i}^{2}}(p)$.
$(6+8=14$ marks $)$
6. Let M, N be Riemannian manifolds. Let $f: M \rightarrow N$ be a smooth map. Show that f is totally geodesic if and only if, for any $p \in M$, if u is a smooth convex function in a neighbourhood of $f(p)$ in N, then $u \circ f$ is convex in a neighbourhood of p. (18 marks)
7. Let M be a compact Riemannian manifold without boundary, and suppose the sectional curvature of M is nonpositive. Show that the higher homotopy groups $\pi_{n}(M)$ are zero for all $n \geq 2$. (10 marks)
8. Let M be a compact Riemannian manifold without boundary, and suppose the sectional curvature of M is strictly negative everywhere. Let $p \in M$, and let $a, b:[0,1] \rightarrow M$ be loops based at p. Suppose that the corresponding elements of $\pi_{1}(M, p)$ commute, $[a] \cdot[b]=[b] \cdot[a]$. Show that there is an element $[c] \in \pi_{1}(M, p)$ and integers $m, n \in \mathbb{Z}$ such that $[a]=[c]^{m},[b]=[c]^{n}$. (18 marks)

